A New Method for Iris Recognition Based on Contourlet Transform and Non Linear Approximation Coefficients

نویسندگان

  • Amir Azizi
  • Hamid Reza Pourreza
چکیده

In different methods of Biometrics, recognition by iris images in recent years has been taken into consideration by researchers as one of the common methods of identification like passwords, credit cards or keys. Iris recognition a new biometric technology has great advantages such as variability, stability and security. In this paper we propose a new feature extraction method for iris recognition based on contourlet transform. Contourlet transform captures the intrinsic geometrical structures of iris image. It decomposes the iris image into a set of directional sub-bands with texture details captured in different orientations at various scales so for reducing the feature vector dimensions we use the method for extract only significant bit and information from normalized iris images. In this method we ignore fragile bits. At last the feature vector is approximated by non linear approximation coefficient. Experimental results show that the proposed method reduces processing time and increase the classification accuracy and outperforms the wavelet based method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Localization and Feature Extraction Method Based on Wavelet Transform in Iris Recognition

With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This rese...

متن کامل

An efficient process of recognition of human iris based on contourlet transforms

Iris recognition a new biometric technology has great advantages such as variability, stability and security. In this paper we propose a feature extraction method for iris recognition based on contourlet transform. Contourlet transform captures the intrinsic geometrical structures of iris image. It decomposes the iris image into a set of directional subbands with texture details captured in dif...

متن کامل

Iris Recognition Using Curvelet Transform Based on Principal Component Analysis and Linear Discriminant Analysis

The iris texture curve features play an important role in iris recognition. Although better performance in terms of recognition effectiveness can be attained using the recognition approach based on the wavelet transform, the iris curve singularity cannot be sparsely represented by wavelet coefficients. In view of the better approximation accuracy and sparse representation ability of the Curvele...

متن کامل

A Novel Technique for Iris Recognition System

In this paper we propose a new feature extraction method for iris recognition based on contourlet transform. Contourlet transform captures the intrinsic geometrical structures of iris image. It decomposes the iris image into a set of directional sub-bands with texture details captured in different orientations at various scales so for reducing the feature vector dimensions we use the method for...

متن کامل

A Novel Method Using Contourlet to Extract Features for Iris Recognition System

In different areas of Biometrics, recognition by iris images in nowadays has been taken into consideration by researchers as one of the common methods of identification like passwords, credit cards or keys. Iris recognition a novel biometric technology has great advantages such as variability, stability and security. Although the area of the iris is small it has enormous pattern variability whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009